Research Institute of Visual Computing

Select a project of interest using the advanced search:

Glioblastoma blood flow measured with stable xenon CT indicates tumor necrosis, vascularity, and brain invasion

Authors: Crocker M, Saadoun S, Jury A, Jones C, Zacharoulis S, Thomas S, Zwiggelaar R, Bridges LR, Bell BA, Papadopoulos MC.

Abstract:

Tumor vasculature is a promising therapeutic target in glioblastoma. Imaging tumor blood flow may help assess the efficacy of anti-angiogenic treatments. We determined the clinical usefulness of stable xenon CT performed preoperatively in patients with glioblastoma. This is a prospective cohort study. We determined absolute tumor blood flow before surgery in 38 patients with glioblastoma using stable xenon CT. We also histologically examined tumor specimens obtained from surgery and quantified their vascularity (by CD31 and CD105 immunostain), necrosis (by hematoxylin and eosin stain), and the presence of neuronal processes (by neurofilament immunostain). According to the xenon CT blood flow map, there are 3 types of glioblastoma. Type I glioblastomas have unimodal high blood flow histograms; histologically there is little necrosis and vascular proliferation. Type II glioblastomas have unimodal low blood flow histograms; histologically there is prominent necrosis and vascular proliferation. We propose that in type II glioblastoma, the abnormal vessels induced by hypoxia are inefficient at promoting blood flow. Type III glioblastomas have multimodal blood flow histograms. Histologically there is significant neuronal tissue within the tumor. Patients with type III glioblastomas were more likely to develop a post-surgical deficit, consistent with the inclusion of normal tissue within the tumor. Preoperative measurement of absolute blood flow with stable xenon CT in patients with glioblastoma predicts key biological features of the tumor and may aid surgical planning.

Link to Paper

Authors

Prof. Reyer Zwiggelaar

Prof. Reyer Zwiggelaar

Professor Reyer Zwiggelaar has a research interest covering a wide range of computer vision and topological data analysis aspects.